论文标题

铁电气泡域的稳定性

Stability of ferroelectric bubble domains

论文作者

Govinden, Vivasha, Rijal, Suyash, Zhang, Qi, Nahas, Yousra, Bellaiche, Laurent, Valanoor, Nagarajan, Prokhorenko, Sergei

论文摘要

纳米级铁电拓扑,例如涡旋,抗涡流,气泡图案等,在薄膜中通过机械和电边界条件的微妙平衡来稳定在薄膜中。对气泡域的相位稳定性的系统理解,尤其是当上述因素同时起作用时,仍然难以捉摸。在这里,我们将基于第一原则的模拟与超薄外延(001)PBZR0.4TI0.6O3异质结构的扫描探针显微镜结合使用,以解决此差距。模拟预测,在薄膜厚度降低,机械压力增加和/或改进的电筛选的组合下,生长的迷宫域将转变为气泡。这些拓扑转变用一种共同的基本机制来解释。也就是说,我们认为,域形态的演变独立于驱动力的性质,使系统可以保护其原始的残留去极化场。因此,后者仍将固定在外部或内置电动偏置确定的值中。为了验证我们的预测,我们利用断层原子力显微镜来实现减小膜厚度和增加机械刺激的并发作用。结果提供了对相位稳定性的系统理解,并证明了对纳米级铁电泡域的受控操纵。

Nanoscale ferroelectric topologies such as vortices, anti-vortices, bubble patterns etc. are stabilized in thin films by a delicate balance of both mechanical and electrical boundary conditions. A systematic understanding of the phase stability of bubble domains, particularly when the above factors act simultaneously, remains elusive. Here we present first-principle-based simulations in combination with scanning probe microscopy of ultrathin epitaxial (001) PbZr0.4Ti0.6O3 heterostructures to address this gap. The simulations predict that as-grown labyrinthine domains will transform to bubbles under combinations of reduced film thickness, increased mechanical pressure and/or improved electrical screening. These topological transitions are explained by a common fundamental mechanism. Namely, we argue that, independently of the nature of the driving force, the evolution of the domain morphology allows the system to conserve its original residual depolarization field. Thereby, the latter remains pinned to a value determined by an external or built-in electric bias. To verify our predictions, we then exploit tomographic atomic force microscopy to achieve the concurrent effect of reducing film thickness and increased mechanical stimulus. The results provide a systematic understanding of phase stability and demonstrate controlled manipulation of nanoscale ferroelectric bubble domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源