论文标题

具有电荷状态和电子控制的光学控制的量子点分子设备的耦合

Quantum dot molecule devices with optical control of charge status and electronic control of coupling

论文作者

Bopp, Frederik, Rojas, Jonathan, Revenga, Natalia, Riedl, Hubert, Sbresny, Friedrich, Boos, Katarina, Simmet, Tobias, Ahmadi, Arash, Gershoni, David, Kasprzak, Jacek, Ludwig, Arne, Reitzenstein, Stephan, Wieck, Andreas, Reuter, Dirk, Muller, Kai, Finley, Jonathan J.

论文摘要

隧道偶联的光学活性量子点 - 量子点分子(QDMS) - 提供了结合出色的光学特性的可能性,例如强光 - 强度耦合与两型旋转单曲线($ s-t_0 $)Qubits($ s-t_0 $)Qubits Qubits($ s-t_0 $)。使用两个旋转形成的$ S-T_0 $基础固有地保护了电场和磁场噪声。但是,由于通常使用单个栅极电压来稳定点的电荷占用率并控制点间轨道耦合,因此在最佳条件下$ S-T_0 $ QUBITS的操作仍然具有挑战性。在这里,我们提出一个可调QDM的电场可调节,该QDM可以在需要时光学地用一个(1H)或两个孔(2H)充电。我们执行四相光学和电场控制序列,以促进2H电荷状态的顺序制备,然后允许灵活控制点间耦合。通过光学泵和电子隧道电离加载电荷。我们达到的一个和两孔充电效率分别为93.5 $ \ pm $ 0.8%和80.5 $ \ pm $ 1.3%。将有效的电荷状态制备和点间耦合的精确设置结合在一起,可以控制几翼Qubits,这是按需生成二维光子簇状态或微波和光子之间的量子转导所必需的。

Tunnel-coupled pairs of optically active quantum dots - quantum dot molecules (QDMs) - offer the possibility to combine excellent optical properties such as strong light-matter coupling with two-spin singlet-triplet ($S-T_0$) qubits having extended coherence times. The $S-T_0$ basis formed using two spins is inherently protected against electric and magnetic field noise. However, since a single gate voltage is typically used to stabilize the charge occupancy of the dots and control the inter-dot orbital couplings, operation of the $S-T_0$ qubits under optimal conditions remains challenging. Here, we present an electric field tunable QDM that can be optically charged with one (1h) or two holes (2h) on demand. We perform a four-phase optical and electric field control sequence that facilitates the sequential preparation of the 2h charge state and subsequently allows flexible control of the inter-dot coupling. Charges are loaded via optical pumping and electron tunnel ionization. We achieve one- and two-hole charging efficiencies of 93.5 $\pm$ 0.8 % and 80.5 $\pm$ 1.3 %, respectively. Combining efficient charge state preparation and precise setting of inter-dot coupling allows control of few-spin qubits, as would be required for on-demand generation of two-dimensional photonic cluster states or quantum transduction between microwaves and photons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源