论文标题
使用多目标优化器和对抗网络对兼容对象进行模型预测性操纵,以进行遮挡补偿
Model Predictive Manipulation of Compliant Objects with Multi-Objective Optimizer and Adversarial Network for Occlusion Compensation
论文作者
论文摘要
机器人对象的机器人操纵目前是机器人技术中最活跃的问题之一,因为它有可能自动化许多重要应用。尽管近年来机器人社区取得了进展,但这些类型的材料的3D塑造仍然是一个开放的研究问题。在本文中,我们提出了一个新的基于视觉的控制器,以自动用机器人臂调节兼容物体的形状。我们的方法使用有效的在线表面/曲线拟合算法,该算法可以用紧凑的特征向量量化对象的几何形状。这种反馈样向量使得可以建立明确的形状伺服环。为了将机器人的运动与计算的形状特征进行协调,我们提出了一个逐渐估计器,该估计器近似于系统的感觉运动模型,同时满足各种性能标准。开发了一个深层的对抗网络,以稳健地弥补相机视野中的视觉遮挡,即使对对象的部分观察,该网络也能够指导塑造任务。模型预测控制用于计算受到工作空间和饱和约束的机器人的塑造运动。提出了一项详细的实验研究,以验证提出的控制框架的有效性。
The robotic manipulation of compliant objects is currently one of the most active problems in robotics due to its potential to automate many important applications. Despite the progress achieved by the robotics community in recent years, the 3D shaping of these types of materials remains an open research problem. In this paper, we propose a new vision-based controller to automatically regulate the shape of compliant objects with robotic arms. Our method uses an efficient online surface/curve fitting algorithm that quantifies the object's geometry with a compact vector of features; This feedback-like vector enables to establish an explicit shape servo-loop. To coordinate the motion of the robot with the computed shape features, we propose a receding-time estimator that approximates the system's sensorimotor model while satisfying various performance criteria. A deep adversarial network is developed to robustly compensate for visual occlusions in the camera's field of view, which enables to guide the shaping task even with partial observations of the object. Model predictive control is utilized to compute the robot's shaping motions subject to workspace and saturation constraints. A detailed experimental study is presented to validate the effectiveness of the proposed control framework.