论文标题
连续体中结合状态的参数依赖性:一种一般理论
Parametric dependence of bound states in the continuum: a general theory
论文作者
论文摘要
具有高Q $共振的光子结构对于许多实际应用至关重要,并且可以通过在连续体(BICS)中使用绑定状态修改理想结构来相对容易实现它们。当对具有BIC的理想光子结构受到干扰时,BIC可能会被破坏(成为共振状态),或者可能继续以略有不同的频率和略有不同的波形(如果适当)而存在。某些BIC对某些结构扰动非常强大,但大多数BIC都不固定。最近的研究表明,对于正确定义的一组结构扰动,可以针对任何通用的非等级BIC定义非负整数$ n $。整数$ n $是保留从集合任意选择的扰动所需的最小可调参数数。稳健和非塑料BIC的$ n = 0 $和$ n \ ge 1 $。较大的$ n $意味着BIC更难找到。如果结构由$ m $真实参数给出,则整数$ n $是由BIC存在于$ M $二维参数空间中的参数值形成的几何对象的编成。在本文中,我们建议使用$ n $的公式,为一般情况提供一些理由,计算具有单个定期方向的二维结构中不同类型的BIC的$ N $,并通过数值示例说明结果。我们的研究提高了对BIC的理论理解,并为其实际应用提供了有用的指导。
Photonic structures with high-$Q$ resonances are essential for many practical applications, and they can be relatively easily realized by modifying ideal structures with bound states in the continuum (BICs). When an ideal photonic structure with a BIC is perturbed, the BIC may be destroyed (becomes a resonant state) or may continue to exist with a slightly different frequency and a slightly different wavevector (if appropriate). Some BICs are robust against certain structural perturbations, but most BICs are nonrobust. Recent studies suggest that a nonnegative integer $n$ can be defined for any generic nondegenerate BIC with respect to a properly defined set of structural perturbations. The integer $n$ is the minimum number of tunable parameters needed to preserve the BIC for perturbations arbitrarily chosen from the set. Robust and nonrobust BICs have $n=0$ and $n\ge 1$, respectively. A larger $n$ implies that the BIC is more difficult to find. If a structure is given by $m$ real parameters, the integer $n$ is the codimension of a geometric object formed by the parameter values at which the BIC exists in the $m$-dimensional parameter space. In this paper, we suggest a formula for $n$, give some justification for the general case, calculate $n$ for different types of BICs in two-dimensional structures with a single periodic direction, and illustrate the results by numerical examples. Our study improves the theoretical understanding on BICs and provides useful guidance to their practical applications.