论文标题

开源软件项目围绕开发人员社交网络中社区演变的定量分析

Quantitative Analysis of Community Evolution in Developer Social Networks Around Open Source Software Projects

论文作者

Wang, Liang, Li, Ying, Zhang, Jierui, Tao, Xianping

论文摘要

了解开发者社交网络(DSN)围绕开源软件(OSS)项目的发展的演变可以提供有关OSS开发社会技术过程的宝贵见解。现有研究表明,可以使用分裂,收缩,合并,扩展,出现和灭绝等模式有效地描述社会社区的进化行为。但是,现有的基于模式的方法在支持定量分析方面受到限制,并且在描述社区进化时以相互排斥的方式使用模式可能存在问题。在这项工作中,我们建议在演变过程中,在不同程度上,每对社区之间可以同时发生不同的模式。设计了四个基于熵的指数,以分别衡量社区分裂,收缩,合并和扩展的程度,这可以为DSN中的社区进化提供全面和定量的衡量。这些指数具有量化社区进化的特性,包括单调性,以及与有意义的情况相对应的最大值和最小值。它们也可以结合起来描述更多的模式,例如社区出现和灭绝。我们通过现实世界中的OSS项目进行实验,以评估所提出指数的有效性。结果表明,所提出的指标可以有效地捕获社区的演变,并且与检测DSN中的进化模式的现有方法一致,精度为94.1 \%。结果还表明,该指数可用于预测OSS团队的生产率,精度为0.718。总而言之,提出的方法是第一个量化不同模式的社区进化程度的方法之一,这有望在支持未来的研究以及有关DSNS和OSS开发的应用方面。

Understanding the evolution of communities in developer social networks (DSNs) around open source software (OSS) projects can provide valuable insights about the socio-technical process of OSS development. Existing studies show the evolutionary behaviors of social communities can effectively be described using patterns including split, shrink, merge, expand, emerge, and extinct. However, existing pattern-based approaches are limited in supporting quantitative analysis, and are potentially problematic for using the patterns in a mutually exclusive manner when describing community evolution. In this work, we propose that different patterns can occur simultaneously between every pair of communities during the evolution, just in different degrees. Four entropy-based indices are devised to measure the degree of community split, shrink, merge, and expand, respectively, which can provide a comprehensive and quantitative measure of community evolution in DSNs. The indices have properties desirable to quantify community evolution including monotonicity, and bounded maximum and minimum values that correspond to meaningful cases. They can also be combined to describe more patterns such as community emerge and extinct. We conduct experiments with real-world OSS projects to evaluate the validity of the proposed indices. The results suggest the proposed indices can effectively capture community evolution, and are consistent with existing approaches in detecting evolution patterns in DSNs with an accuracy of 94.1\%. The results also show that the indices are useful in predicting OSS team productivity with an accuracy of 0.718. In summary, the proposed approach is among the first to quantify the degree of community evolution with respect to different patterns, which is promising in supporting future research and applications about DSNs and OSS development.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源