论文标题

使用groebner碱和结果解决稀疏的多项式系统

Solving sparse polynomial systems using Groebner bases and resultants

论文作者

Bender, Matías R.

论文摘要

多项式方程的求解系统是非线性和计算代数的核心问题。由于Buchberger的算法用于计算60年代的Gröbner基础,因此该领域有很多进展。此外,这些方程已被用来建模和解决来自生物学,密码学和机器人技术等各种学科的问题。目前,我们对如何从理论和算法的角度求解通用系统有很好的了解。但是,实践中遇到的多项式方程通常是结构化的,因此,有关通用系统的许多属性和结果不适用于它们。因此,过去几十年来的一个共同趋势是开发数学和算法框架来利用多项式系统的特定结构。 可以说,最常见的结构是稀疏。也就是说,系统的多项式仅涉及几个单元。自从Bernstein,Khovanskii和Kushnirenko在稀疏系统的预期解决方案数量上的工作以来,复曲面的几何形状一直是采用稀疏性的默认数学框架。特别是,它是将经典工具扩展到系统的问题的关键,例如结果计算,同质持续方法以及最近的Gröbner基础。在这项工作中,我们将回顾这些经典工具,它们的扩展以及用于解决多项式系统的稀疏性方面的最新进展。 该手稿补充了其在ISSAC 2022会议上提出的同义词。

Solving systems of polynomial equations is a central problem in nonlinear and computational algebra. Since Buchberger's algorithm for computing Gröbner bases in the 60s, there has been a lot of progress in this domain. Moreover, these equations have been employed to model and solve problems from diverse disciplines such as biology, cryptography, and robotics. Currently, we have a good understanding of how to solve generic systems from a theoretical and algorithmic point of view. However, polynomial equations encountered in practice are usually structured, and so many properties and results about generic systems do not apply to them. For this reason, a common trend in the last decades has been to develop mathematical and algorithmic frameworks to exploit specific structures of systems of polynomials. Arguably, the most common structure is sparsity; that is, the polynomials of the systems only involve a few monomials. Since Bernstein, Khovanskii, and Kushnirenko's work on the expected number of solutions of sparse systems, toric geometry has been the default mathematical framework to employ sparsity. In particular, it is the crux of the matter behind the extension of classical tools to systems, such as resultant computations, homotopy continuation methods, and most recently, Gröbner bases. In this work, we will review these classical tools, their extensions, and recent progress in exploiting sparsity for solving polynomial systems. This manuscript complements its homonymous tutorial presented at the conference ISSAC 2022.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源