论文标题

量子电路的低量张量分解

Low-rank tensor decompositions of quantum circuits

论文作者

Gelß, Patrick, Klus, Stefan, Knebel, Sebastian, Shakibaei, Zarin, Pokutta, Sebastian

论文摘要

量子计算可以说是本世纪最革命性和最具破坏性的技术之一。由于潜在应用的数量不断增加,并且复杂性的持续增长,量子电路的发展,模拟,优化和物理实现对于设计新算法至关重要。我们展示了矩阵产品状态(MPS)和基质产品运算符(MPO)如何用来表达某些量子状态,量子门和整个量子电路作为低级别张量。这使得对经典计算机上复杂的量子电路进行分析和模拟,并深入了解系统的基础结构。我们提供了不同的示例,以证明MPO公式的优势,并表明,如果在整个模拟过程中可以保持波函数表示的键尺寸,则它们比常规技术更有效。

Quantum computing is arguably one of the most revolutionary and disruptive technologies of this century. Due to the ever-increasing number of potential applications as well as the continuing rise in complexity, the development, simulation, optimization, and physical realization of quantum circuits is of utmost importance for designing novel algorithms. We show how matrix product states (MPSs) and matrix product operators (MPOs) can be used to express certain quantum states, quantum gates, and entire quantum circuits as low-rank tensors. This enables the analysis and simulation of complex quantum circuits on classical computers and to gain insight into the underlying structure of the system. We present different examples to demonstrate the advantages of MPO formulations and show that they are more efficient than conventional techniques if the bond dimensions of the wave function representation can be kept small throughout the simulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源