论文标题

对论点质量预测有整体观点

Towards a Holistic View on Argument Quality Prediction

论文作者

Fromm, Michael, Berrendorf, Max, Reiml, Johanna, Mayerhofer, Isabelle, Bhargava, Siddharth, Faerman, Evgeniy, Seidl, Thomas

论文摘要

论证是社会基本的支柱之一,并且在NLP的进步和文本数据的广泛可用性中引发,自动化的论证采矿引起了人们的关注。争论的决定性属性是它们的力量或质量。尽管有关于自动估计论点强度的作品,但它们的范围很狭窄:他们专注于孤立的数据集,并忽略与相关论证挖掘任务的互动,例如论证识别,证据检测或情感上的吸引力。在这项工作中,我们通过从多个不同角度接近论点质量估计来缩小这一差距:基于彻底的经验评估的丰富结果,我们评估了跨不同领域的参数质量估计的概括能力,与相关论证挖掘任务的相互作用以及情绪对感知论点强度的影响。我们发现概括取决于训练部分中不同领域的足够表示。在零射击转移和多任务实验中,我们透露,论点质量是更具挑战性的任务之一,但可以改善他人。最后,我们表明情绪在论证质量中起着比通常假设的较小作用。

Argumentation is one of society's foundational pillars, and, sparked by advances in NLP and the vast availability of text data, automated mining of arguments receives increasing attention. A decisive property of arguments is their strength or quality. While there are works on the automated estimation of argument strength, their scope is narrow: they focus on isolated datasets and neglect the interactions with related argument mining tasks, such as argument identification, evidence detection, or emotional appeal. In this work, we close this gap by approaching argument quality estimation from multiple different angles: Grounded on rich results from thorough empirical evaluations, we assess the generalization capabilities of argument quality estimation across diverse domains, the interplay with related argument mining tasks, and the impact of emotions on perceived argument strength. We find that generalization depends on a sufficient representation of different domains in the training part. In zero-shot transfer and multi-task experiments, we reveal that argument quality is among the more challenging tasks but can improve others. Finally, we show that emotions play a minor role in argument quality than is often assumed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源