论文标题

子集节点在大型动态图上跟踪

Subset Node Anomaly Tracking over Large Dynamic Graphs

论文作者

Guo, Xingzhi, Zhou, Baojian, Skiena, Steven

论文摘要

在不断发展的图中跟踪节点的目标子集对于许多现实世界应用都很重要。现有方法通常着重于识别异常边缘或以流方式找到异常图表快照。但是,面向边缘的方法无法量化单个节点如何随时间变化,而其他人则需要一直保持整个图的表示形式,从而计算效率低下。 本文提出了\ textsc {dynanom},这是一个有效的框架,旨在量化更改并在大型动态加权图上定位每个节点异常。得益于基于个性化Pagerank的动态表示学习的最新进展,\ textsc {dynanom}是1)\ textIt {效率}:时间复杂性是线性与边缘事件的数量和独立于输入图的节点大小的独立性; 2)\ textIt {有效}:\ textsc {dynanom}可以成功跟踪反映现实世界异常的拓扑变化; 3)\ textit {flexible}:可以为各种应用程序定义不同类型的异常分数功能。实验在基准图数据集和新的大型现实世界动态图上都证明了这些属性。具体而言,基于\ textsc {dynanom}的实例化方法的准确性为0.5425,而不是基线的0.2790(最佳基线),而在节点级异常定位的任务上,同时运行的速度比基线快2.3倍。我们提出了一个真实的案例研究,并进一步证明了\ textsc {dynanom}对于大规模图的异常发现的可用性。

Tracking a targeted subset of nodes in an evolving graph is important for many real-world applications. Existing methods typically focus on identifying anomalous edges or finding anomaly graph snapshots in a stream way. However, edge-oriented methods cannot quantify how individual nodes change over time while others need to maintain representations of the whole graph all time, thus computationally inefficient. This paper proposes \textsc{DynAnom}, an efficient framework to quantify the changes and localize per-node anomalies over large dynamic weighted-graphs. Thanks to recent advances in dynamic representation learning based on Personalized PageRank, \textsc{DynAnom} is 1) \textit{efficient}: the time complexity is linear to the number of edge events and independent on node size of the input graph; 2) \textit{effective}: \textsc{DynAnom} can successfully track topological changes reflecting real-world anomaly; 3) \textit{flexible}: different type of anomaly score functions can be defined for various applications. Experiments demonstrate these properties on both benchmark graph datasets and a new large real-world dynamic graph. Specifically, an instantiation method based on \textsc{DynAnom} achieves the accuracy of 0.5425 compared with 0.2790, the best baseline, on the task of node-level anomaly localization while running 2.3 times faster than the baseline. We present a real-world case study and further demonstrate the usability of \textsc{DynAnom} for anomaly discovery over large-scale graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源