论文标题

残留动态模式分解:鲁棒和验证的库普曼主义

Residual Dynamic Mode Decomposition: Robust and verified Koopmanism

论文作者

Colbrook, Matthew J., Ayton, Lorna J., Szőke, Máté

论文摘要

动态模式分解(DMD)通过更简单的相干特征的层次结构描述了复杂的动态过程。 DMD定期用于了解湍流的基本特征,并与Koopman操作员密切相关。然而,由于库普曼操作员的无限维质性质,验证分解(等效的库普曼运营商的计算频谱特征)仍然是一个重大挑战。挑战包括虚假(非物理)模式,以及处理连续光谱,这两者经常出现在湍流中。 (Colbrook&Townsend 2021)介绍的残留动态模式分解(RESDMD)通过数据驱动的与完整的无限维库普曼操作员相关的残差计算来克服其中的一些挑战。 RESDMD使用错误控制的一般Koopman运算符计算光谱和伪谱,并使用具有显式高阶收敛定理的光谱测量(包括连续光谱)平滑近似。因此,RESDMD提供了强大而经过验证的Koopmanism。我们实施了RESDMD,并在各种流体动态情况下,在不同的雷诺数数字中演示了其在各种流体动态情况下的应用,这既是数值和实验数据。示例包括:圆柱后面的涡流;在湍流边界层中获取的热线数据;粒子图像速度计数据集中在壁式流动上;激光诱导的等离子体的声压信号。我们提出了RESDMD的一些优势,即能够证实可以解决非线性,瞬态模式和光谱计算的能力,并减少宽广的效果。我们还讨论了基于残差的新模态订购如何使词典比传统模量订购更小的词典实现更高的准确性。这为大型数据集进行更大的动态压缩铺平了道路,而无需牺牲准确性。

Dynamic Mode Decomposition (DMD) describes complex dynamic processes through a hierarchy of simpler coherent features. DMD is regularly used to understand the fundamental characteristics of turbulence and is closely related to Koopman operators. However, verifying the decomposition, equivalently the computed spectral features of Koopman operators, remains a major challenge due to the infinite-dimensional nature of Koopman operators. Challenges include spurious (unphysical) modes, and dealing with continuous spectra, both of which occur regularly in turbulent flows. Residual Dynamic Mode Decomposition (ResDMD), introduced by (Colbrook & Townsend 2021), overcomes some of these challenges through the data-driven computation of residuals associated with the full infinite-dimensional Koopman operator. ResDMD computes spectra and pseudospectra of general Koopman operators with error control, and computes smoothed approximations of spectral measures (including continuous spectra) with explicit high-order convergence theorems. ResDMD thus provides robust and verified Koopmanism. We implement ResDMD and demonstrate its application in a variety of fluid dynamic situations, at varying Reynolds numbers, arising from both numerical and experimental data. Examples include: vortex shedding behind a cylinder; hot-wire data acquired in a turbulent boundary layer; particle image velocimetry data focusing on a wall-jet flow; and acoustic pressure signals of laser-induced plasma. We present some advantages of ResDMD, namely, the ability to verifiably resolve non-linear, transient modes, and spectral calculation with reduced broadening effects. We also discuss how a new modal ordering based on residuals enables greater accuracy with a smaller dictionary than the traditional modulus ordering. This paves the way for greater dynamic compression of large datasets without sacrificing accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源