论文标题

通过多模式学习克服在线内容分类中的语言差异

Overcoming Language Disparity in Online Content Classification with Multimodal Learning

论文作者

Verma, Gaurav, Mujumdar, Rohit, Wang, Zijie J., De Choudhury, Munmun, Kumar, Srijan

论文摘要

自然语言处理的进步(NLP)彻底改变了研究人员和从业者解决关键的社会问题的方式。现在,大型语言模型是开发用于文本检测和分类任务的最新解决方案的标准。但是,先进的计算技术和资源的开发不成比例地集中在英语上,从而使大多数语言在全球范围内说。尽管现有研究开发了更好的多语言和单语言模型来弥合英语和非英语语言之间的这种语言差异,但我们探索了通过多模式机器学习中包含图像中包含的信息的希望。我们对三个检测任务的比较分析,重点介绍危机信息,虚假新闻和情感认可以及五种高源非英语语言,表明:(a)基于预先训练的大型语言模型的检测框架,例如BERT和多语言 - 多语言 - 多种语言 - 在与非genglish语言中相比,在包括Impor和Multim(BRID)中相比,在英语中更好地表现出更好的英语语言。我们就现有工作的研究结果就大语言模型的陷阱进行了介绍,并讨论了它们的理论和实际含义。本文的资源可从https://multimodality-language-disparity.github.io/获得。

Advances in Natural Language Processing (NLP) have revolutionized the way researchers and practitioners address crucial societal problems. Large language models are now the standard to develop state-of-the-art solutions for text detection and classification tasks. However, the development of advanced computational techniques and resources is disproportionately focused on the English language, sidelining a majority of the languages spoken globally. While existing research has developed better multilingual and monolingual language models to bridge this language disparity between English and non-English languages, we explore the promise of incorporating the information contained in images via multimodal machine learning. Our comparative analyses on three detection tasks focusing on crisis information, fake news, and emotion recognition, as well as five high-resource non-English languages, demonstrate that: (a) detection frameworks based on pre-trained large language models like BERT and multilingual-BERT systematically perform better on the English language compared against non-English languages, and (b) including images via multimodal learning bridges this performance gap. We situate our findings with respect to existing work on the pitfalls of large language models, and discuss their theoretical and practical implications. Resources for this paper are available at https://multimodality-language-disparity.github.io/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源