论文标题

与自学的强大,有效的医学成像

Robust and Efficient Medical Imaging with Self-Supervision

论文作者

Azizi, Shekoofeh, Culp, Laura, Freyberg, Jan, Mustafa, Basil, Baur, Sebastien, Kornblith, Simon, Chen, Ting, MacWilliams, Patricia, Mahdavi, S. Sara, Wulczyn, Ellery, Babenko, Boris, Wilson, Megan, Loh, Aaron, Chen, Po-Hsuan Cameron, Liu, Yuan, Bavishi, Pinal, McKinney, Scott Mayer, Winkens, Jim, Roy, Abhijit Guha, Beaver, Zach, Ryan, Fiona, Krogue, Justin, Etemadi, Mozziyar, Telang, Umesh, Liu, Yun, Peng, Lily, Corrado, Greg S., Webster, Dale R., Fleet, David, Hinton, Geoffrey, Houlsby, Neil, Karthikesalingam, Alan, Norouzi, Mohammad, Natarajan, Vivek

论文摘要

医疗人工智能(AI)的最新进展已提供了可以达到临床专家水平绩效的系统。但是,当在与训练环境不同的临床环境中评估时,此类系统往往会表现出在最佳的“分布外”性能。一种常见的缓解策略是使用特定于网站的数据为每个临床环境开发单独的系统[1]。但是,这很快变得不切实际,因为医疗数据很耗时,可以注释且昂贵[2]。因此,“数据有效概括”的问题给医学AI开发带来了持续的困难。尽管代表性学习的进展显示出希望,但并未严格研究其好处,特别是用于分布的设置。为了应对这些挑战,我们提出了Repedis,这是一种统一的表示策略,以提高医学成像AI的鲁棒性和数据效率。雷雷迪斯使用大规模监督转移学习与自我监督学习的通用组合,几乎不需要特定于任务的自定义。我们研究各种医学成像任务,并使用回顾性数据模拟三个现实的应用程序场景。 RESEDIS表现出明显改善的分布性能,而在强有力的基线上,诊断准确性相对相对提高了11.5%。更重要的是,我们的策略会导致对医学成像AI的强大数据有效的概括,并使用跨任务的1%至33%的RETOR数据匹配强有力的监督基线。这些结果表明,Repedis可以显着加速医学成像AI开发的生命周期,从而为医学成像AI提供了重要的一步,以产生广泛的影响。

Recent progress in Medical Artificial Intelligence (AI) has delivered systems that can reach clinical expert level performance. However, such systems tend to demonstrate sub-optimal "out-of-distribution" performance when evaluated in clinical settings different from the training environment. A common mitigation strategy is to develop separate systems for each clinical setting using site-specific data [1]. However, this quickly becomes impractical as medical data is time-consuming to acquire and expensive to annotate [2]. Thus, the problem of "data-efficient generalization" presents an ongoing difficulty for Medical AI development. Although progress in representation learning shows promise, their benefits have not been rigorously studied, specifically for out-of-distribution settings. To meet these challenges, we present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI. REMEDIS uses a generic combination of large-scale supervised transfer learning with self-supervised learning and requires little task-specific customization. We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data. REMEDIS exhibits significantly improved in-distribution performance with up to 11.5% relative improvement in diagnostic accuracy over a strong supervised baseline. More importantly, our strategy leads to strong data-efficient generalization of medical imaging AI, matching strong supervised baselines using between 1% to 33% of retraining data across tasks. These results suggest that REMEDIS can significantly accelerate the life-cycle of medical imaging AI development thereby presenting an important step forward for medical imaging AI to deliver broad impact.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源