论文标题

瓶颈距离的基本度量几何形状

Basic Metric Geometry of the Bottleneck Distance

论文作者

Che, Mauricio, Galaz-García, Fernando, Guijarro, Luis, Solis, Ingrid Membrillo, Valiunas, Motiejus

论文摘要

给定公制对$(x,a)$,即公制空间$ x $和一个杰出的封闭套件$ a \ subset x $,一个人可以以功能方式构造一个尖的伪级$ \ MATHCAL {d} _ \ intcal {d} _ \ infty(x,x,x,a)$持久性图。我们研究了空间的基本度量属性$ \ mathcal {d} _ \ infty(x,a)$,并获得其METRINISINES,完整性,可分离性和地理位置的特征。

Given a metric pair $(X,A)$, i.e. a metric space $X$ and a distinguished closed set $A \subset X$, one may construct in a functorial way a pointed pseudometric space $\mathcal{D}_\infty(X,A)$ of persistence diagrams equipped with the bottleneck distance. We investigate the basic metric properties of the spaces $\mathcal{D}_\infty(X,A)$ and obtain characterizations of their metrizability, completeness, separability, and geodesicity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源