论文标题
高维数据引导程序
High-dimensional Data Bootstrap
论文作者
论文摘要
本文回顾了高维自举的最新进展。我们首先回顾了高维中心限制定理,以在矩形上的样本平均向量分布,引导程序一致性产生高维度以及用于建立这些结果的关键技术。然后,我们审查了高维自举的选定应用:高维矢量参数的同时置信集,通过级别进行多个假设测试,选择后推断,交点范围,部分确定的参数以及对策略评估中最佳策略的推断。最后,我们还评论了几个未来的研究方向。
This article reviews recent progress in high-dimensional bootstrap. We first review high-dimensional central limit theorems for distributions of sample mean vectors over the rectangles, bootstrap consistency results in high dimensions, and key techniques used to establish those results. We then review selected applications of high-dimensional bootstrap: construction of simultaneous confidence sets for high-dimensional vector parameters, multiple hypothesis testing via stepdown, post-selection inference, intersection bounds for partially identified parameters, and inference on best policies in policy evaluation. Finally, we also comment on a couple of future research directions.