论文标题

动态定价在随机乘车网络中提供了强大的平衡

Dynamic Pricing Provides Robust Equilibria in Stochastic Ridesharing Networks

论文作者

Cashore, J. Massey, Frazier, Peter I., Tardos, Eva

论文摘要

乘车市场很复杂:驾驶员是战略性的,骑手的需求,驾驶员的可用性是随机性的,而且诸如天气之类的复杂城市尺度现象会在空间和时间范围内引起大规模的相关性。同时,过去的工作集中在这些挑战的一部分上。我们提出了一个具有战略驱动因素,时空动力学和随机性的乘车网络模型。比经典的流体限制相比,支持计算障碍性和更好的建模灵活性,我们使用了两级随机模型,该模型允许由天气或大型公共事件引起的相关冲击。 使用此模型,我们提出了一种新颖的定价机制:随机时空定价(SSP)。我们表明,SSP机制在渐近互动兼容,并且在市场足够大时,所有(近似)的均衡是渐近的福利最大化。 SSP机制迭代地基于实现的需求和供应,在这种意义上是动态价格。我们表明这很关键:虽然SSP机制的静态变体(其价格随市场水平的随机场景而变化,而不是个人骑手和驾驶员的决策)具有一系列渐近福利近似近似平衡的序列,我们证明它还具有其他平衡产生极低的社会福利。因此,我们认为动态定价对于确保随机乘车共享网络的鲁棒性很重要。

Ridesharing markets are complex: drivers are strategic, rider demand and driver availability are stochastic, and complex city-scale phenomena like weather induce large scale correlation across space and time. At the same time, past work has focused on a subset of these challenges. We propose a model of ridesharing networks with strategic drivers, spatiotemporal dynamics, and stochasticity. Supporting both computational tractability and better modeling flexibility than classical fluid limits, we use a two-level stochastic model that allows correlated shocks caused by weather or large public events. Using this model, we propose a novel pricing mechanism: stochastic spatiotemporal pricing (SSP). We show that the SSP mechanism is asymptotically incentive-compatible and that all (approximate) equilibria of the resulting game are asymptotically welfare-maximizing when the market is large enough. The SSP mechanism iteratively recomputes prices based on realized demand and supply, and in this sense prices dynamically. We show that this is critical: while a static variant of the SSP mechanism (whose prices vary with the market-level stochastic scenario but not individual rider and driver decisions) has a sequence of asymptotically welfare-optimal approximate equilibria, we demonstrate that it also has other equilibria producing extremely low social welfare. Thus, we argue that dynamic pricing is important for ensuring robustness in stochastic ride-sharing networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源