论文标题

专注的对抗性攻击

Focused Adversarial Attacks

论文作者

Cilloni, Thomas, Walter, Charles, Fleming, Charles

论文摘要

机器学习的最新进展表明,神经模型容易受到最低扰动的输入或对抗性示例的影响。对抗算法是优化问题,可以通过扰动输入来最大程度地降低ML模型的准确性,通常使用模型的损失函数来制作这种扰动。最先进的对象检测模型的特征是由于图像中可能的位置和大小的大小,因此输出歧管非常大。这导致他们的输出是稀疏和优化的问题,这些问题会引起许多不必要的计算。 我们建议使用模型学到的歧管的一个非常有限的子集来计算对抗性示例。我们的\ textit {集中的对抗攻击}(FA)算法确定了一小部分敏感区域,以执行基于梯度的对抗攻击。当模型的歧管稀疏激活时,FA比其他基于梯度的攻击要快得多。同样,在相同的扰动约束下,其扰动比其他方法更有效。我们在2017年可可和Pascal VOC 2007检测数据集上评估FA。

Recent advances in machine learning show that neural models are vulnerable to minimally perturbed inputs, or adversarial examples. Adversarial algorithms are optimization problems that minimize the accuracy of ML models by perturbing inputs, often using a model's loss function to craft such perturbations. State-of-the-art object detection models are characterized by very large output manifolds due to the number of possible locations and sizes of objects in an image. This leads to their outputs being sparse and optimization problems that use them incur a lot of unnecessary computation. We propose to use a very limited subset of a model's learned manifold to compute adversarial examples. Our \textit{Focused Adversarial Attacks} (FA) algorithm identifies a small subset of sensitive regions to perform gradient-based adversarial attacks. FA is significantly faster than other gradient-based attacks when a model's manifold is sparsely activated. Also, its perturbations are more efficient than other methods under the same perturbation constraints. We evaluate FA on the COCO 2017 and Pascal VOC 2007 detection datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源