论文标题

通过对比度多重兴趣改善微观效果建议

Improving Micro-video Recommendation via Contrastive Multiple Interests

论文作者

Li, Beibei, Jin, Beihong, Song, Jiageng, Yu, Yisong, Zheng, Yiyuan, Zhuo, Wei

论文摘要

随着微观视频创作者和观众的迅速增加,如何向观众提供大量候选人的个性化建议开始吸引越来越多的关注。但是,现有的Micro-Video推荐模型依赖于昂贵的多模式信息,并学习无法反映用户在Micro-Videos中多重兴趣的总体兴趣。最近,对比学习为完善现有推荐技术提供了新的机会。因此,在本文中,我们建议提取对比性的多功能利益,并设计一个微观录像带CMI。具体而言,CMI从其历史互动序列中学习了每个用户的多个兴趣嵌入,其中隐式正交微型视频类别用于解除多个用户兴趣。此外,它建立了对比度多息损失,以提高嵌入的鲁棒性和建议的性能。在两个微视频数据集上实验的结果表明,CMI在现有基线方面实现了最先进的性能。

With the rapid increase of micro-video creators and viewers, how to make personalized recommendations from a large number of candidates to viewers begins to attract more and more attention. However, existing micro-video recommendation models rely on expensive multi-modal information and learn an overall interest embedding that cannot reflect the user's multiple interests in micro-videos. Recently, contrastive learning provides a new opportunity for refining the existing recommendation techniques. Therefore, in this paper, we propose to extract contrastive multi-interests and devise a micro-video recommendation model CMI. Specifically, CMI learns multiple interest embeddings for each user from his/her historical interaction sequence, in which the implicit orthogonal micro-video categories are used to decouple multiple user interests. Moreover, it establishes the contrastive multi-interest loss to improve the robustness of interest embeddings and the performance of recommendations. The results of experiments on two micro-video datasets demonstrate that CMI achieves state-of-the-art performance over existing baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源