论文标题

在硬球内限制在空间上的原子的密度功能研究

Density functional study of atoms spatially confined inside a hard sphere

论文作者

Majumdar, Sangita, Roy, Amlan K.

论文摘要

放置在有限尺寸的空腔内的原子提供了许多有趣的功能,因此是当前活动的一个主题。这项工作提出了一种密度功能方法,以在球形无法穿透的围栏下追求多电子原子的地面和激发态。 radial kohn-sham(KS)方程已通过援引具有物理动机的基于工作功能的交换潜力来解决,该潜力提供了近六角的质量结果。精确的数值本征和特征值是通过满足Dirichlet边界条件的广义伪谱法(GPS)获得的。两个相关函数,\ emph {viz。,}(i)简单的,参数化的局部wigner型和(ii)采用梯度 - 依赖性和laplacian依赖性的非本地Lee-Yang-Parr(LYP)功能来分析电子相关效应。 He-Isoelectronic系列($ Z = 2-4 $)以及Li and Be Atom提供了初步的探索结果。还报道了几个低洼的单一兴奋状态。将这些与可用的文献结果进行了比较 - 提供了极好的一致性。还提供了径向密度和期望值。批判性地讨论了相关能量功能的性能。从本质上讲,这是一个简单,准确的方案,用于在KS密度函数理论的界面中研究一个\ emph {硬}球形框内的原子系统。

An atom placed inside a cavity of finite dimension offers many interesting features, and thus has been a topic of great current activity. This work proposes a density functional approach to pursue both ground and excited states of a multi-electron atom under a spherically impenetrable enclosure. The radial Kohn-Sham (KS) equation has been solved by invoking a physically motivated work-function-based exchange potential, which offers near-Hartree-Fock-quality results. Accurate numerical eigenfunctions and eigenvalues are obtained through a generalized pseudospectral method (GPS) fulfilling the Dirichlet boundary condition. Two correlation functionals, \emph{viz.,} (i) simple, parametrized local Wigner-type, and (ii) gradient- and Laplacian-dependent non-local Lee-Yang-Parr (LYP) functionals are adopted to analyze the electron correlation effects. Preliminary exploratory results are offered for ground states of He-isoelectronic series ($Z=2-4$), as well as Li and Be atom. Several low-lying singly excited states of He atom are also reported. These are compared with available literature results -- which offers excellent agreement. Radial densities as well as expectation values are also provided. The performance of correlation energy functionals are discussed critically. In essence, this presents a simple, accurate scheme for studying atomic systems inside a \emph{hard} spherical box within the rubric of KS density functional theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源