论文标题
量子顶点操作员的图形微积分,I:动力融合操作员
Graphical calculus for quantum vertex operators, I: The dynamical fusion operator
论文作者
论文摘要
本文是关于量子顶点操作员图形微积分系列中的第一个。我们详细建立了带有扭曲的色带类别和编织的单体类别的图形微积分的基础。我们通过将其应用于各种类别的量子组模块来说明这种方法的潜力,特别是为了导致动态融合操作员的线性操作员方程的扩展,这是由于Arnaudon,Buffenoir,Ragoucy和Roche,以延伸到线性操作员方程式的系统$ Q $ -KZ类型。
This paper is the first in a series on graphical calculus for quantum vertex operators. We establish in great detail the foundations of graphical calculus for ribbon categories and braided monoidal categories with twist. We illustrate the potential of this approach by applying it to various categories of quantum group modules, in particular to derive an extension of the linear operator equation for dynamical fusion operators, due to Arnaudon, Buffenoir, Ragoucy and Roche, to a system of linear operator equations of $q$-KZ type.