论文标题
符号内部产品图及其自动形态
Symplectic inner product graphs and their automorphisms
论文作者
论文摘要
在有限字段$ \ mathbb {f} _q $上引入了一个新图,称为Symbletic Inner产品图$ SPI \ big(2ν,Q \ big)$。我们表明,$ spi \ big(2ν,q \ big)$与直径$ 4 $相连,并且仅当$ s \ geq2 $和$ spi \ big(2ν,q \ big)$的自动形态组。在两个$ spi \ big(2ν,q \ big)$和两个$ spi \ big(2ν,q \ big)$的边缘的两个顶点和两个边缘在同一轨道上,在$ spi \ big(2ν,q \ big)的行动下,分别在相同的轨道上,有两个必要和足够的条件。
A new graph, called the symplectic inner product graph $Spi\big(2ν,q\big)$, over a finite field $\mathbb{F}_q$ is introduced. We show that $Spi\big(2ν,q\big)$ is connected with diameter $4$ if and only if $ν\geq2$ and the automorphism group of $Spi\big(2ν,q\big)$ is determined. Two necessary and sufficient conditions for two vertices of $Spi\big(2ν,q\big)$ and two edges of $Spi\big(2ν,q\big)$ respectively are in the same orbit under the action of the automorphism group of $Spi\big(2ν,q\big)$ are obtained.