论文标题

2型平面图及以后的奇数着色

Odd coloring of 2-boundary planar graphs and beyond

论文作者

Liu, Weichan, Qi, Mengke, Zhang, Xin

论文摘要

在本文中,我们介绍了2符号平面图的概念。如果图形在平面上有嵌入,则图是2符合条件的平面,以便所有顶点位于最多两个面的边界上,并且没有边缘。如果每个未分离的顶点都有某种颜色在其附近出现奇怪的次数,则图形的适当着色是奇怪的。 Petruševski和Škrekovski在2022年猜想每个平面图都构成了奇怪的5色。我们确认了这一猜想的2符号平面图。此外,我们提出了有关具有独立感兴趣的两条平面图的几个问题。

In this paper, we introduce the notion of 2-boundary planar graphs. A graph is 2-boundary planar if it has an embedding in the plane so that all vertices lie on the boundary of at most two faces and no edges are crossed. A proper coloring of a graph is odd if every non-isolated vertex has some color that appears an odd number of times on its neighborhood. Petruševski and Škrekovski conjectured in 2022 that every planar graph admits an odd 5-coloring. We confirm this conjecture for 2-boundary planar graphs. Moreover, we present several questions regarding 2-boundary planar graphs that are of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源