论文标题
在非紧密riemannian流形上的测地网
Geodesic nets on non-compact Riemannian manifolds
论文作者
论文摘要
地球花是基于同一点$ p $的测量环的有限收集,满足以下平衡条件:所有单位切线向量的总和$ p $等于所有地理ARCS会议的总和等于零矢量。特别是,一朵大量的花是固定的大地测量网。 我们证明,在每个具有局部凸面末端的完全非紧凑型歧管中,都存在一朵非平凡的大地花朵。
A geodesic flower is a finite collection of geodesic loops based at the same point $p$ that satisfy the following balancing condition: The sum of all unit tangent vectors to all geodesic arcs meeting at $p$ is equal to the zero vector. In particular, a geodesic flower is a stationary geodesic net. We prove that in every complete non-compact manifold with locally convex ends there exists a non-trivial geodesic flower.