论文标题

在不平坦的户外环境中,用于空间意识到机器人导航的SIM到现实策略

Sim-to-Real Strategy for Spatially Aware Robot Navigation in Uneven Outdoor Environments

论文作者

Weerakoon, Kasun, Sathyamoorthy, Adarsh Jagan, Manocha, Dinesh

论文摘要

由于逼真的模拟环境的可用性,深度强化学习(DRL)取得了巨大成功。但是,对于在模拟环境中训练的策略,模拟期间的性能降解仍然是一个具有挑战性的问题。为了缩小这一SIM到真实的差距,我们提出了一种新颖的混合体系结构,该架构利用训练有素的注意力DRL策略作为室外导航的导航成本图。我们的注意力DRL网络结合了一个以机器人为中心的高程图,IMU数据,机器人的姿势,先前的动作和目标信息,以计算指示非可转换区域的导航成本图。我们在成本映射上计算最低成本的航路点,并利用动态窗口方法(DWA)在高成本区域上具有速度约束,以遵循高度不平衡的户外环境中的路点。我们的配方会沿着稳定的可遍历区域产生动态可行的速度,以达到机器人的目标。我们观察到成功率增加了5%,与端到端的DRL方法相比,平均机器人振动减少的13.09%,平均速度减少19.33%。我们在模拟和现实世界不平衡的环境中使用Clearpath Husky机器人评估方法的好处。

Deep Reinforcement Learning (DRL) is hugely successful due to the availability of realistic simulated environments. However, performance degradation during simulation to real-world transfer still remains a challenging problem for the policies trained in simulated environments. To close this sim-to-real gap, we present a novel hybrid architecture that utilizes an intermediate output from a fully trained attention DRL policy as a navigation cost map for outdoor navigation. Our attention DRL network incorporates a robot-centric elevation map, IMU data, the robot's pose, previous actions, and goal information as inputs to compute a navigation cost-map that highlights non-traversable regions. We compute least-cost waypoints on the cost map and utilize the Dynamic Window Approach (DWA) with velocity constraints on high cost regions to follow the waypoints in highly uneven outdoor environments. Our formulation generates dynamically feasible velocities along stable, traversable regions to reach the robot's goals. We observe an increase of 5% in terms of success rate, 13.09% of the decrease in average robot vibration, and a 19.33% reduction in average velocity compared to end-to-end DRL method and state-of-the-art methods in complex outdoor environments. We evaluate the benefits of our method using a Clearpath Husky robot in both simulated and real-world uneven environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源