论文标题

高阶多线性判别分析通过订单 - $ \ textit {n} $ tensor eigendecomposition

High-Order Multilinear Discriminant Analysis via Order-$\textit{n}$ Tensor Eigendecomposition

论文作者

Ozdemir, Cagri, Hoover, Randy C., Caudle, Kyle, Braman, Karen

论文摘要

在机器学习,计算机视觉和视频分析的许多领域,具有高维度的高阶数据至关重要。多维阵列(通常称为张量)用于安排高阶数据结构,同时保持数据样本的自然表示。在过去的十年中,已经做出了巨大的努力,以扩展经典的线性判别分析,以进行高阶数据分类,通常称为多线性判别分析(MDA)。大多数现有方法都是基于塔克分解和$ \ textit {n} $ - 模式张量 - 马trix产品。当前的论文提出了一种基于张量的多线性判别分析的新方法,称为高阶多线性判别分析(HOMLDA)。这种方法基于张量分解,在该分解中,订单 - $ \ textit {n} $ tensor可以写成订单的产物-U \ textit {n} $ tensor,并且对传统线性判别分析(LDA)具有自然扩展。此外,由此产生的框架homlda可能会产生一个接近单数的课堂内散点张量。因此,计算逆不准确的情况可能会扭曲判别分析。为了解决这个问题,引入了一种改进的方法,称为强大的高阶多线性判别分析(RHOMLDA)。多个数据集的实验结果表明,我们提出的方法就当前基于塔克分解的监督学习方法提供了改进的分类性能。

Higher-order data with high dimensionality is of immense importance in many areas of machine learning, computer vision, and video analytics. Multidimensional arrays (commonly referred to as tensors) are used for arranging higher-order data structures while keeping the natural representation of the data samples. In the past decade, great efforts have been made to extend the classic linear discriminant analysis for higher-order data classification generally referred to as multilinear discriminant analysis (MDA). Most of the existing approaches are based on the Tucker decomposition and $\textit{n}$-mode tensor-matrix products. The current paper presents a new approach to tensor-based multilinear discriminant analysis referred to as High-Order Multilinear Discriminant Analysis (HOMLDA). This approach is based upon the tensor decomposition where an order-$\textit{n}$ tensor can be written as a product of order-$\textit{n}$ tensors and has a natural extension to traditional linear discriminant analysis (LDA). Furthermore, the resulting framework, HOMLDA, might produce a within-class scatter tensor that is close to singular. Thus, computing the inverse inaccurately may distort the discriminant analysis. To address this problem, an improved method referred to as Robust High-Order Multilinear Discriminant Analysis (RHOMLDA) is introduced. Experimental results on multiple data sets illustrate that our proposed approach provides improved classification performance with respect to the current Tucker decomposition-based supervised learning methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源