论文标题
使用Muse Data,Cartwheel Galaxy中的Nebular丰度梯度
Nebular abundance gradient in the Cartwheel galaxy using MUSE data
论文作者
论文摘要
我们在这里介绍了使用非常大的望远镜(VLT)多单元光谱探索器(MUSE)数据集对碰撞环形车轮中普遍观察到的离子的详细分析的结果。该分析还包括221个HII区域,除了40个相对较差的H $α$发射区域外,辐条,磁盘和内环中发出的区域。 He,n,o和fe的离子丰度分别使用9、20、20、20和17环HII区域获得,其中S $^{++} $温度敏感的线被检测到。对于其他区域,包括内环和外环之间的所有星云,我们使用强线方法(SLM)获得了o丰度。环区域的中间$ 12+\ log \ rm {\ frac {o} {h}} $ = 8.19 $ \ pm $ 0.15,$ \ log \ rm {\ frac {n} $ \ log \ rm {\ frac {fe} {o}} = - $ 2.24 $ \ pm $ 0.09使用DM。在Cartwheel中观察到的O型O范围内,N/O和Fe/O值随着O的增加而成比例地降低,表明O局部富集而不相应地富集初级N和Fe。使用SLM获得的磁盘HII区域的o丰度显示出明确的径向梯度。与径向梯度的外推相比,环HII区域的平均o丰度低于$ \ sim $ 0.1 DEX。观察到的趋势表明,如Renaud等人最近的模拟所预测的那样,大多数处理的元素都保留了前倾斜的丰度梯度,将大多数处理的元素移位到环上。 (2018年),圈中金属贫困气体的后插后。
We here present the results from a detailed analysis of nebular abundances of commonly observed ions in the collisional ring galaxy Cartwheel using the Very Large Telescope (VLT) Multi-Unit Spectroscopic Explorer (MUSE) dataset. The analysis includes 221 HII regions in the star-forming ring, in addition to 40 relatively fainter H$α$ emitting regions in the spokes, disk and the inner ring. The ionic abundances of He, N, O and Fe are obtained using the direct method (DM) for 9, 20, 20, and 17 ring HII regions, respectively, where the S$^{++}$ temperature-sensitive line is detected. For the rest of the regions, including all the nebulae between the inner and the outer ring, we obtained O abundances using the strong-line method (SLM). The ring regions have a median $12+\log\rm{\frac{O}{H}}$=8.19$\pm$0.15, $\log\rm{\frac{N}{O}}=-$1.57$\pm$0.09 and $\log\rm{\frac{Fe}{O}}=-$2.24$\pm$0.09 using the DM. Within the range of O abundances seen in the Cartwheel, the N/O and Fe/O values decrease proportionately with increasing O, suggesting local enrichment of O without corresponding enrichment of primary N and Fe. The O abundances of the disk HII regions obtained using the SLM show a well-defined radial gradient. The mean O abundance of the ring HII regions is lower by $\sim$0.1 dex as compared to the extrapolation of the radial gradient. The observed trends suggest the preservation of the pre-collisional abundance gradient, displacement of most of the processed elements to the ring, as predicted by the recent simulation by Renaud et al. (2018), and post-collisional infall of metal-poor gas in the ring.