论文标题
多项式单子和双重熟练的贵族形态
Cofinal morphism of polynomial monads and double delooping
论文作者
论文摘要
利用Batanin和Berger开发的内部代数分类器理论,我们构建了多项式单子的形态,我们证明这是同型Cofinal。然后,我们描述了该结果如何构成Turchin-Dwyer-Hess定理的分类直接双重辩护证明的主要概念参数,该证明涉及长结空间的明确双重辩护。
Using the theory of internal algebras classifiers developed by Batanin and Berger, we construct a morphism of polynomial monads which we prove is homotopically cofinal. We then describe how this result constitutes the main conceptual argument for a categorical direct double delooping proof of the Turchin-Dwyer-Hess theorem concerning the explicit double delooping of spaces of long knots.