论文标题
大规模计算机上晶格QCD的Multigrid的最高级别改进
Coarsest-level improvements in multigrid for lattice QCD on large-scale computers
论文作者
论文摘要
晶格上量子染色体动力学(QCD)的数值模拟需要频繁的线性解决方程的解决方案,这些方程式具有较大,稀疏且通常为不良条件的矩阵。同时,代数多机方法是这些困难解决方案的标准。尽管在多机层次结构的最粗糙级别的线性系统比最佳级别的线性系统要小得多,但它们可能严重不良条件,从而影响整个求解器的可扩展性。在本文中,我们研究了增强最高级别求解器的不同新颖方法,并使用DD-$α$ AMG证明了它们的潜力,DD-$α$ AMG是晶状体QCD的公开代数多机求解器之一。我们为两个晶格离散化,即三叶草改良的威尔逊和扭曲的质量。对于两个研究的增强功能的组合,通缩和多项式预处理,在小质量参数的状态下都显着改善。在三叶草改良的威尔逊案中,我们观察到求解器对条件的不敏感性明显改善,并且对于扭曲的质量,我们能够摆脱迄今为止使用的扭曲质量参数的人工增加,迄今为止使用的最高水平的扭曲质量参数可以使最高水平的求解更快地融合。
Numerical simulations of quantum chromodynamics (QCD) on a lattice require the frequent solution of linear systems of equations with large, sparse and typically ill-conditioned matrices. Algebraic multigrid methods are meanwhile the standard for these difficult solves. Although the linear systems at the coarsest level of the multigrid hierarchy are much smaller than the ones at the finest level, they can be severely ill-conditioned, thus affecting the scalability of the whole solver. In this paper, we investigate different novel ways to enhance the coarsest-level solver and demonstrate their potential using DD-$α$AMG, one of the publicly available algebraic multigrid solvers for lattice QCD. We do this for two lattice discretizations, namely clover-improved Wilson and twisted mass. For both the combination of two of the investigated enhancements, deflation and polynomial preconditioning, yield significant improvements in the regime of small mass parameters. In the clover-improved Wilson case we observe a significantly improved insensitivity of the solver to conditioning, and for twisted mass we are able to get rid of a somewhat artificial increase of the twisted mass parameter on the coarsest level used so far to make the coarsest level solves converge more rapidly.