论文标题

平面的存在$ 4 $连接基本上是$ 6 $ - 边缘连接的图形,没有爪子分解

The existence of planar $4$-connected essentially $6$-edge-connected graphs with no claw-decompositions

论文作者

Hasanvand, Morteza

论文摘要

在2006年,bar {á} t和托马森(Thomassen)猜想,每个平面$ 4 $ - 连接的$ 4 $ - 定型尺寸的简单图表可将三个分解的简单图形分解。后来,莱(Lai,2007年)被一个带有边缘连通性的平面图的家族反驳了这一猜想,最小的一个包含$ 24 $的顶点。在本说明中,我们首先给出一个较小的反例,只有$ 18 $的顶点,然后构建一个平面家族$ 4 $连接的本质上是$ 6 $ - 连接的$ 4 $ 4 $的尺寸尺寸的简单图形,可将三个尺寸除外,没有爪子分解。该结果为两个已知的结果提供了清晰度,这些结果表明,每三个$ 5 $连接的大小相连图的图形都可以承认,如果爪子分解本质上是$ 6 $ - 与边缘连接或平面。

In 2006 Bar{á}t and Thomassen conjectured that every planar $4$-edge-connected $4$-regular simple graph of size divisible by three admits a claw-decomposition. Later, Lai (2007) disproved this conjecture by a family of planar graphs with edge-connectivity $4$ which the smallest one contains $24$ vertices. In this note, we first give a smaller counterexample having only $18$ vertices and next construct a family of planar $4$-connected essentially $6$-edge-connected $4$-regular simple graphs of size divisible by three with no claw-decompositions. This result provides the sharpness for two known results which say that every $5$-edge-connected graph of size divisible by three admits a claw-decomposition if it is essentially $6$-edge-connected or planar.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源