论文标题

加权的Gagliardo-Nirenberg通过最佳运输理论和应用

Weighted Gagliardo-Nirenberg inequalities via Optimal Transport Theory and Applications

论文作者

Balogh, Zoltán M., Don, Sebastiano, Kristály, Alexandru

论文摘要

我们证明,在$ \ Mathbb r^n $的开放式凸锥上证明了具有三个权重的Gagliardo-Nirenberg不平等的不平等现象 - 验证了联合凹条件。如果权重彼此等于彼此,则不平等现象变得尖锐,我们明确地计算了锋利的常数。对于一定范围的参数,我们可以表征极端函数类别;在这种情况下,我们还表明,主要三个加权的主要gliardo-nirenberg不平等的清晰度意味着重量必须等于某些恒定的乘法因子。我们的方法使用最佳的质量运输理论,并仔细分析了权重的关节凹陷条件。作为应用,我们建立了具有明显锋利常数的尖锐加权$ p $ -log-sobolev,faber-krahn和Isoperimetric不平等现象。

We prove Gagliardo-Nirenberg inequalities with three weights -- verifying a joint concavity condition -- on open convex cones of $\mathbb R^n$. If the weights are equal to each other the inequalities become sharp and we compute explicitly the sharp constants. For a certain range of parameters we can characterize the class of extremal functions; in this case, we also show that the sharpness in the main three-weighted Gagliardo-Nirenberg inequality implies that the weights must be equal up to some constant multiplicative factors. Our approach uses optimal mass transport theory and a careful analysis of the joint concavity condition of the weights. As applications we establish sharp weighted $p$-log-Sobolev, Faber-Krahn and isoperimetric inequalities with explicit sharp constants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源