论文标题

函数的度量近似

Metrical approximations of functions

论文作者

Chaouchi, B., Kostic, M., Velinov, D.

论文摘要

在本文中,我们分析了函数的度量近似$ f:λtimesx \ rightarrow y $通过三角多项式和$ρ$ - 周期类型函数,其中$ \ emberyset \ neqviseqλ\neqλ\ subseteq {\ subseteq {\ nathb r}^n}^n},$是$ x $ $ $ x $ $ x {除了经典概念外,我们还分析了Stepanov,Weyl,Besicovitch和Doss广义方法,以进行度量近似。我们阐明了引入的功能空间的许多结构属性,并将我们的理论结果的几种应用提供给抽象的Volterra Integro-differendentifentix方程和偏微分方程。

In this paper, we analyze metrical approximations of functions $F :Λtimes X \rightarrow Y$ by trigonometric polynomials and $ρ$-periodic type functions, where $\emptyset \neq Λ\subseteq {\mathbb R}^{n},$ $X$ and $Y $are complex Banach spaces, and $ρ$ is a general binary relation on $Y .$ Besides the classical concept, we analyze Stepanov,Weyl, Besicovitch and Doss generalized approaches to metrical approximations. We clarify many structural properties of introduced spaces of functions and provide several applications of our theoretical results to the abstract Volterra integro-differential equations and the partial differential equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源