论文标题
壳体夹层原子和等离子体:偶然变性,金属特征和信息熵
Shell-confined atom and plasma: incidental degeneracy, metallic character and information entropy
论文作者
论文摘要
壳限制原子可以用作通用模型,以解释\ emph {free}和\ emph {oberped}条件。在这种情况下,一个原子被困在两个内$(r_ {a})$的同心球内和外部$(r_ {b})$ radius中。 $ r_ {a}的选择,r_ {b} $呈现四个不同的量子机械系统。在氢原子中,它们被称为(a)自由氢原子(FHA)(b)受到封闭的氢原子(CHA)(c)壳固定的氢原子(Scha)(d)左侧固定氢原子(LCHA)。通过将$ r_ {a},r_ {b} $放置在相应\ emph {free} $ n,\ ell $状态的径向节点的位置,可能会出现一种新型的变性。在给定的FHA的给定$ n $,存在$ \ frac {n(n+1)(n+2)} {6} $具有能量$ - \ frac {z^{2}}} {2n^{2 {2}} $的ISO-能力状态数。此外,在给定的$ n $中,这四个潜力中的每一个的个人贡献也被列举。在某些众所周知的\ emph {plasma}(debye and operdental cosine筛选)系统中进一步探索和分析了这种偶然的退化概念。多极振荡器强度,$ f^{(k)} $,以及极化性,$α^{(k)} $,在某些低洼状态$(k = 1-4)$中评估(a) - (d)。在激发态中,还观察到\ emph {负}极化性。在这种情况下,讨论并证明了SchA中H类系统的金属行为。另外,$ f^{(k)} $和$α^{(k)} $的分析闭合形式的表达以$ 1s,2s,2p,2p,3d,4f,5g $ fha的状态报告。最后,Shannon熵和Onicescu {\ color {red {red}信息}能量在Scha和LCHA的基础状态下,在位置和动量空间都以scha和LCHA为基础。首次报道了许多结果。
Shell confined atom can serve as a generalized model to explain both \emph{free} and \emph{confined} condition. In this scenario, an atom is trapped inside two concentric spheres of inner $(R_{a})$ and outer $(R_{b})$ radius. The choice of $R_{a}, R_{b}$ renders four different quantum mechanical systems. In hydrogenic atom, they are termed as (a) free hydrogen atom (FHA) (b) confined hydrogen atom (CHA) (c) shell-confined hydrogen atom (SCHA) (d) left-confined hydrogen atom (LCHA). By placing $R_{a}, R_{b}$ at the location of radial nodes of respective \emph{free} $n,\ell$ states, a new kind of degeneracy may arise. At a given $n$ of FHA, there exists $\frac{n(n+1)(n+2)}{6}$ number of iso-energic states with energy $-\frac{Z^{2}}{2n^{2}}$. Furthermore, within a given $n$, the individual contribution of each of these four potentials has also been enumerated. This incidental degeneracy concept is further explored and analyzed in certain well-known \emph{plasma} (Debye and exponential cosine screened) systems. Multipole oscillator strength, $f^{(k)}$, and polarizability, $α^{(k)}$, are evaluated for (a)-(d) in some low-lying states $(k=1-4)$. In excited states, \emph{negative} polarizability is also observed. In this context, metallic behavior of H-like systems in SCHA is discussed and demonstrated. Additionally analytical closed-form expression of $f^{(k)}$ and $α^{(k)}$ are reported for $1s,2s,2p,3d,4f,5g$ states of FHA. Finally, Shannon entropy and Onicescu {\color{red}information} energies are investigated in ground state in SCHA and LCHA in both position and momentum spaces. Much of the results are reported here for first time.