论文标题
使用量子启发的集群扩展方法加速化学空间搜索
Accelerated chemical space search using a quantum-inspired cluster expansion approach
论文作者
论文摘要
为了使具有理想特性的材料加速发现,开发准确有效的搜索算法至关重要。量子退火器和类似的量子启发的优化器具有为某些组合优化挑战提供加速计算的潜力。但是,由于没有兼容优化映射方法,它们尚未被利用用于材料发现。在这里,我们表明,通过将群集扩展与量子启发的叠加技术相结合,我们可以首次将量子退火器在化学空间探索中杠杆化。这种方法使我们能够加速对具有理想性能的材料的搜索速度比遗传算法和贝叶斯优化快10-50倍,并在基态预测准确性方面有了显着提高。利用这一点,我们搜索化学空间以发现酸性氧气进化反应(OER)催化剂,并找到一个有希望的先前未开发的Ru-Cr-Cr-Mn-SB-O $ _2 $的化学家族。该化学家族中最好的催化剂显示,质量活动比Art最先进的RUO $ _2 $高8倍,并保持180小时的性能,同时以10mA/cm $^2 $的酸性0.5 m $ H_2SO_4 $ electrolesolyte运行。
To enable the accelerated discovery of materials with desirable properties, it is critical to develop accurate and efficient search algorithms. Quantum annealers and similar quantum-inspired optimizers have the potential to provide accelerated computation for certain combinatorial optimization challenges. However, they have not been exploited for materials discovery due to absence of compatible optimization mapping methods. Here we show that by combining cluster expansion with a quantum-inspired superposition technique, we can lever quantum annealers in chemical space exploration for the first time. This approach enables us to accelerate the search of materials with desirable properties order 10-50 times faster than genetic algorithms and bayesian optimizations, with a significant improvement in ground state prediction accuracy. Levering this, we search chemical space for discovery of acidic oxygen evolution reaction (OER) catalysts and find a promising previously unexplored chemical family of Ru-Cr-Mn-Sb-O$_2$. The best catalyst in this chemical family show a mass activity 8 times higher than state-of-art RuO$_2$ and maintain performance for 180 hours while operating at 10mA/cm$^2$ in acidic 0.5 M $H_2SO_4$ electrolyte.