论文标题

分布,第一积分和legendrian叶子

Distributions, first integrals and Legendrian foliations

论文作者

Luza, Maycol Falla, Rosas, Rudy

论文摘要

我们研究了带有“分离变量”的全体形态分布的细菌。在编纂的一个中,这类分布的一个众所周知的示例是由$ \ Mathbb {p}^{2m+1} $上的规范接触结构给出$(\ mathbb {c}^n,0)$,我们表明存在,对于某些$κ\ in \ mathbb {z} _ {\ geq 0} $,与$ d $的Taylor系数相关(\ Mathbb {C}^κ,0)$,使$ d $在每个级别上都是不可融合的,我们表明,所有级别的$ h_ {d} $ h_ {d} $均包含$ h_ {d percem of z $ p leve, $ z $和$ d $的积分相同。

We study germs of holomorphic distributions with "separated variables'. In codimension one, a well know example of this kind of distribution is given by the canonical contact structure on $\mathbb{P}^{2m+1}$ . Another example is the Darboux distribution, which gives the normal local form of any contact structure. Given a germ $D$ of holomorphic distribution with separated variables in $(\mathbb{C}^n,0)$, we show that there exists , for some $κ\in \mathbb{Z}_{\geq 0}$ related to the Taylor coefficients of $D$, a holomorphic submersion $H_{D}: (\mathbb{C}^n,0) \rightarrow (\mathbb{C}^κ,0)$ such that $D$ is completely non-integrable on each level of $H_{D}$. Furthermore, we show that there exists a holomorphic vector field $Z$ tangent to $D$, such that each level of $H_{D}$ contains a leaf of $Z$ that is somewhere dense in the level. In particular, the field of meromorphic first integrals of $Z$ and that of $D$ are the same.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源