论文标题
在5D扭曲Ellis-Bronnikov的5D扭曲中的一致性
Geodesic Congruences in 5D Warped Ellis-Bronnikov Spacetimes
论文作者
论文摘要
我们研究了广义的Ellis-Bronnikov SpaceTime(4D-GEB)和最近提出的5D模型中的时间词,其中4D-GEB嵌入了扭曲的几何形状(5D-WGEB)中并进行比较研究。发现ESR变量的分析表达式(对于4D几何形状)揭示了虫洞参数的作用。在更通用的4D和5D方案中,测量方程式,地球偏差方程和Raychaudhury方程是数值求解的。在2D-Surfaces上投射的时型测量学(与大地测量流线正交)的一致性的横截面区域的演变产生了一个有趣的观点,并显示了蠕虫孔参数和生长/衰减的翘曲因子的影响。即使没有初始一致性旋转,也存在扭曲因子的存在会触发旋转或积聚。还发现在一致性中旋转的存在正在扮演至关重要的角色,我们会详细讨论。
We study the timelike geodesic congruences in the generalized Ellis-Bronnikov spacetime (4D-GEB) and in recently proposed 5D model where a 4D-GEB is embedded in a warped geometry (5D-WGEB) and conduct a comparative study. Analytical expressions of ESR variables (for 4D geometries) are found which reveal the role of the wormhole parameter. In more general 4D and 5D scenarios geodesic equation, geodesic deviation equation and Raychaudhury equations are solved numerically. The evolution of cross-sectional area of the congruences of timelike geodesics (orthogonal to the geodesic flow lines) projected on 2D-surfaces yield an interesting perspective and shows the effects of the wormhole parameter and growing/decaying warp factors. Presence of warping factor triggers rotation or accretion even in the absence of initial congruence rotation. Presence of rotation in the congruence is also found to be playing a crucial role which we discuss in detail.