论文标题
关于单基因逆肌的理性子集
On the rational subsets of the monogenic free inverse monoid
论文作者
论文摘要
我们证明,平等问题对于单基因逆元$ f $的合理子集是可决定的。是否可以识别$ f $的理性子集是否可以决定。我们证明,只有在有限地生成时,$ f $的下monoid是理性的。我们还证明,有限$ \ Mathcal {J} $的有理子集的成员资格问题是可决定的,涵盖了自由倒数的单体。
We prove that the equality problem is decidable for rational subsets of the monogenic free inverse monoid $F$. It is also decidable whether or not a rational subset of $F$ is recognizable. We prove that a submonoid of $F$ is rational if and only if it is finitely generated. We also prove that the membership problem for rational subsets of a finite $\mathcal{J}$-above monoid is decidable, covering the case of free inverse monoids.