论文标题
Logigan:通过对抗性预训练学习逻辑推理
LogiGAN: Learning Logical Reasoning via Adversarial Pre-training
论文作者
论文摘要
我们提出Logigan,这是一个无监督的对抗性训练框架,用于提高语言模型的逻辑推理能力。通过自动识别大量文本语料库中的逻辑推理现象,我们训练语言模型以预测蒙面的逻辑语句。受到人类学习中反思性思维的促进效果的启发,我们通过对抗性生成器佛教徒体系结构类似地模拟学习思维的过程,以帮助逻辑学习。 Logigan实现了一种新型的顺序GAN方法,该方法(a)通过利用发电机作为句子级生成的可能性得分师来避免顺序GAN的非差异性挑战,并具有与验证者达成共识的学习目标; (b)对于具有任意目标长度的大规模预训练,在计算上是可行的。基本和大尺寸语言模型都通过logigan进行了训练,这在需要一般推理能力的12个数据集上表现出明显的性能改善,从而揭示了逻辑在广泛推理中的基本作用以及logigan的有效性。对logigan组件的消融研究揭示了语言和逻辑能力之间的相对正交性,并暗示反思性思维的促进效应也可能推广到机器学习。
We present LogiGAN, an unsupervised adversarial pre-training framework for improving logical reasoning abilities of language models. Upon automatic identifying logical reasoning phenomena in massive text corpus via detection heuristics, we train language models to predict the masked-out logical statements. Inspired by the facilitation effect of reflective thinking in human learning, we analogically simulate the learning-thinking process with an adversarial Generator-Verifier architecture to assist logic learning. LogiGAN implements a novel sequential GAN approach that (a) circumvents the non-differentiable challenge of the sequential GAN by leveraging the Generator as a sentence-level generative likelihood scorer with a learning objective of reaching scoring consensus with the Verifier; (b) is computationally feasible for large-scale pre-training with arbitrary target length. Both base and large size language models pre-trained with LogiGAN demonstrate obvious performance improvement on 12 datasets requiring general reasoning abilities, revealing the fundamental role of logic in broad reasoning, as well as the effectiveness of LogiGAN. Ablation studies on LogiGAN components reveal the relative orthogonality between linguistic and logic abilities and suggest that reflective thinking's facilitation effect might also generalize to machine learning.