论文标题

三重系统的极端偏心率:分析结果

Extreme eccentricities of triple systems: Analytic results

论文作者

Mangipudi, Abhi, Grishin, Evgeni, Trani, Alessandro A., Mandel, Ilya

论文摘要

在自然界中观察到三颗星和紧凑的物体。他们的长期演变很复杂。特别是,von-Zeipel-Lidov-Kozai(ZLK)机制可能会导致内部二进制的高度偏心。这样的遭遇会导致大量相互作用的二进制现象,以及出色的和紧凑的对象合并。在这里,我们找到了最大偏心率的显式分析公式,$ e _ {\ rm max} $是内部二元进行ZLK振荡的内部二进制公式,其中测试粒子限制都限制(通过内部到端的动量$η$参数为参数)和通过$ a的$ a $ a $ a $ a $ saper($ ^)放松,用于圆形外轨道。我们在两个限制情况下恢复已知结果($η$或$ε_ {\ rm sa} \ 0 $),并使用数值模拟验证我们的模型的有效性。我们使用两个准确的数值n体代码,$ \ texttt {rebound} $用于牛顿动力学的$ \ texttt {rebound} $,用于通用 - 偏见(GR)动力学的$ \ texttt {tsunami} $,并找到出色的通讯。我们讨论了结果对恒星三元组以及恒星和超级三重黑洞合并的含义。

Triple stars and compact objects are ubiquitously observed in nature. Their long-term evolution is complex; in particular, the von-Zeipel-Lidov-Kozai (ZLK) mechanism can potentially lead to highly eccentric encounters of the inner binary. Such encounters can lead to a plethora of interacting binary phenomena, as well as stellar and compact-object mergers. Here we find explicit analytical formulae for the maximal eccentricity, $e_{\rm max}$, of the inner binary undergoing ZLK oscillations, where both the test particle limit (parametrised by the inner-to-outer angular momentum ratio $η$) and the double-averaging approximation (parametrised by the period ratio, $ε_{\rm SA}$) are relaxed, for circular outer orbits. We recover known results in both limiting cases (either $η$ or $ε_{\rm SA} \to 0$) and verify the validity of our model using numerical simulations. We test our results with two accurate numerical N-body codes, $\texttt{Rebound}$ for Newtonian dynamics and $\texttt{Tsunami}$ for general-relativistic (GR) dynamics, and find excellent correspondence. We discuss the implications of our results for stellar triples and both stellar and supermassive triple black hole mergers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源