论文标题
quasigeodesics的规律性表征了双曲线
Regularity of quasigeodesics characterises hyperbolicity
论文作者
论文摘要
我们在形成常规语言的cayley图中根据准化学的表征双曲线群。我们还通过某些局部(3,0) - Quasigeodesic循环的不存在,从而获得了地球度量空间的双曲线的定量表征。作为应用程序,我们朝着夏皮罗的问题方面的进步,内容涉及承认独特的大地测量cayley图的群体。
We characterise hyperbolic groups in terms of quasigeodesics in the Cayley graph forming regular languages. We also obtain a quantitative characterisation of hyperbolicity of geodesic metric spaces by the non-existence of certain local (3,0)-quasigeodesic loops. As an application we make progress towards a question of Shapiro regarding groups admitting a uniquely geodesic Cayley graph.