论文标题
通过卟啉纳米苯的相连接传输
Phase-Coherent Charge Transport through a Porphyrin Nanoribbon
论文作者
论文摘要
纳米电子设备中的量子干扰可能导致能量计算和有效的热电学收获。当设备缩小到分子水平时,仍不清楚电子传输在多大程度上是相干的,因为分子通常充当散射中心,而没有可能表现出颗粒波偶性的可能性。在这里,我们显示了电子传输在分子卟啉纳米纤维中保持相干,并用完美定义的几何形状合成,并连接到石墨烯电极。该设备充当石墨烯Fabry-Pérot干涉仪,可直接探测包括Kondo One在内的多种机制中的运输机构。静电门控允许在多个分子氧化态中测量分子电导,表明通过干扰,电流增加了一千倍,并揭示了分子和石墨烯传输途径。这些结果证明了在单分子连接中使用干涉效应的平台,开辟了研究分子电子和自旋设备中量子相干性的新途径。
Quantum interference in nano-electronic devices could lead to reduced-energy computing and efficient thermoelectric energy harvesting. When devices are shrunk down to the molecular level it is still unclear to what extent electron transmission is phase coherent, as molecules usually act as scattering centres, without the possibility of showing particle-wave duality. Here we show electron transmission remains phase coherent in molecular porphyrin nanoribbons, synthesized with perfectly defined geometry, connected to graphene electrodes. The device acts as a graphene Fabry-Pérot interferometer, allowing direct probing of the transport mechanisms throughout several regimes, including the Kondo one. Electrostatic gating allows measurement of the molecular conductance in multiple molecular oxidation states, demonstrating a thousand-fold increase of the current by interference, and unravelling molecular and graphene transport pathways. These results demonstrate a platform for the use of interferometric effects in single-molecule junctions, opening up new avenues for studying quantum coherence in molecular electronic and spintronic devices.