论文标题
缩小梯度kähler-icci solitons的Aubin连续性路径
An Aubin continuity path for shrinking gradient Kähler-Ricci solitons
论文作者
论文摘要
令$ d $为感谢您的Kähler-Instein Fano歧管。我们表明,在$ \ mathbb {c} \ times d $的某些折叠式爆炸上,任何复的梯度都会收缩Kähler-ricci soliton满足复杂的monge-ampère方程。然后,我们设置了一个AUBIN连续性路径来求解该方程,并表明它在路径参数的初始值处具有解决方案。我们通过实施另一种连续性方法来做到这一点。
Let $D$ be a toric Kähler-Einstein Fano manifold. We show that any toric shrinking gradient Kähler-Ricci soliton on certain toric blowups of $\mathbb{C}\times D$ satisfies a complex Monge-Ampère equation. We then set up an Aubin continuity path to solve this equation and show that it has a solution at the initial value of the path parameter. This we do by implementing another continuity method.