论文标题

Juno:UWB室内本地化的基于启动加强学习的节点选择

JUNO: Jump-Start Reinforcement Learning-based Node Selection for UWB Indoor Localization

论文作者

Hajiakhondi-Meybodi, Zohreh, Hou, Ming, Mohammadi, Arash

论文摘要

超宽带(UWB)是赋予物体互联网概念(IoT)概念的关键技术之一,以执行可靠,节能且高度准确的监视,筛选和本地化室内环境。但是,由于移动用户和UWB信标之间的无视力(NLOS)连接,因此基于UWB的本地化系统的性能会大大降低。为了减轻NLOS连接的破坏性影响,我们针对增强学习(RL)锚定选择框架的开发,该框架可以有效地应对室内环境的动态性质。但是,在这种情况下,现有的RL模型缺乏在新环境中概括地使用的能力。此外,传统的RL模型达到最佳策略需要很长时间。为了应对这些挑战,我们提出了基于跳跃RL的UWB节点选择(JUNO)框架,该框架在不依赖复杂的NLOS识别/缓解方法的情况下执行实时位置预测。提出的Juno框架的有效性是按照位置误差的术语进行评估的,其中移动用户通过超密集的室内环境随机移动,并有很大的机会建立NLOS连接。与其最先进的框架相比,仿真结果证实了所提出的框架的有效性。

Ultra-Wideband (UWB) is one of the key technologies empowering the Internet of Thing (IoT) concept to perform reliable, energy-efficient, and highly accurate monitoring, screening, and localization in indoor environments. Performance of UWB-based localization systems, however, can significantly degrade because of Non Line of Sight (NLoS) connections between a mobile user and UWB beacons. To mitigate the destructive effects of NLoS connections, we target development of a Reinforcement Learning (RL) anchor selection framework that can efficiently cope with the dynamic nature of indoor environments. Existing RL models in this context, however, lack the ability to generalize well to be used in a new setting. Moreover, it takes a long time for the conventional RL models to reach the optimal policy. To tackle these challenges, we propose the Jump-start RL-based Uwb NOde selection (JUNO) framework, which performs real-time location predictions without relying on complex NLoS identification/mitigation methods. The effectiveness of the proposed JUNO framework is evaluated in term of the location error, where the mobile user moves randomly through an ultra-dense indoor environment with a high chance of establishing NLoS connections. Simulation results corroborate the effectiveness of the proposed framework in comparison to its state-of-the-art counterparts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源