论文标题

孤立的波浪在呈指数剪切的电流和停滞点上

Solitary waves on flows with an exponentially sheared current and stagnation points

论文作者

Flamarion, Marcelo V., Ribeiro-Jr, Roberto

论文摘要

尽管几篇文章已写在持续涡度的流量上的水波上,但对于非恒定涡度影响流动结构的程度,例如停滞点的出现,知之甚少。为了阐明该主题,我们详细研究了孤立波下方的流动,这些波在呈指数衰减的剪切电流上传播。我们的重点是以数值分析停滞点的出现。为此,我们通过经典的Korteweg-De Vries渐近扩展近似流体内部的速度场,并使用MATLAB语言评估所得的流函数。我们的发现表明,波浪下方的流动可以在流体体中具有零,一个或两个停滞点。我们还研究了这些流之间的分叉。我们的模拟表明,停滞点从具有尖锐角的流线出现。

While several articles have been written on water waves on flows with constant vorticity, little is known about the extent to which a nonconstant vorticity affects the flow structure, such as the appearance of stagnation points. In order to shed light on this topic, we investigate in detail the flow beneath solitary waves propagating on an exponentially decaying sheared current. Our focus is to analyse numerically the emergence of stagnation points. For this purpose, we approximate the velocity field within the fluid bulk through the classical Korteweg-de Vries asymptotic expansion and use the Matlab language to evaluate the resulting streamfunction. Our findings suggest that the flow beneath the waves can have zero, one or two stagnation points in the fluid body. We also study the bifurcation between these flows. Our simulations indicate that the stagnation points emerge from a streamline with a sharp corner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源