论文标题

大量的MIMO用于服务联合学习和非养育学习用户

Massive MIMO for Serving Federated Learning and Non-Federated Learning Users

论文作者

Farooq, Muhammad, Vu, Tung Thanh, Ngo, Hien Quoc, Tran, Le-Nam

论文摘要

凭借其隐私保护和沟通效率,联邦学习(FL)已成为超越5G无线网络的有前途的学习框架。预计未来的无线网络将在同一时间频率资源中共同为FL和下行链路非FL用户组服务。尽管在每次FL迭代的下行链路中,但两组以相同的时间频率资源共同从基站接收数据,但每个FL迭代的上行链路都需要双向通信,以支持FL用户的上行链路传输和非FL用户的下行链路传输。为了克服这一挑战,我们提出了半双链(HD)和全双工(FD)通信方案,以服务这两个群体。更具体地说,我们采用了大量的多输入多输出技术,旨在最大化佛罗里达州用户的服务质量(QOS)延迟限制下的非FL用户的最低有效率。由于公式的问题是高度非凸,我们提出了基于连续的凸近似值的功率控制算法以找到固定溶液。数值结果表明,所提出的解决方案的性能明显优于考虑的基线方案。此外,基于FD的方案在自我干扰小或中等和/或FL模型更新大小的情况下优于基于HD的方案。

With its privacy preservation and communication efficiency, federated learning (FL) has emerged as a promising learning framework for beyond 5G wireless networks. It is anticipated that future wireless networks will jointly serve both FL and downlink non-FL user groups in the same time-frequency resource. While in the downlink of each FL iteration, both groups jointly receive data from the base station in the same time-frequency resource, the uplink of each FL iteration requires bidirectional communication to support uplink transmission for FL users and downlink transmission for non-FL users. To overcome this challenge, we present half-duplex (HD) and full-duplex (FD) communication schemes to serve both groups. More specifically, we adopt the massive multiple-input multiple-output technology and aim to maximize the minimum effective rate of non-FL users under a quality of service (QoS) latency constraint for FL users. Since the formulated problem is highly nonconvex, we propose a power control algorithm based on successive convex approximation to find a stationary solution. Numerical results show that the proposed solutions perform significantly better than the considered baselines schemes. Moreover, the FD-based scheme outperforms the HD-based scheme in scenarios where the self-interference is small or moderate and/or the size of FL model updates is large.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源