论文标题
用欧几里得路径积分解决信息损失悖论
Resolving information loss paradox with Euclidean path integral
论文作者
论文摘要
自从霍金(Hawking)开创性发现黑洞蒸发以来,信息损失悖论一直无法解决。在本文中,我们通过欧几里得路径积分(EPI)重新审视纠缠熵,并允许在洛伦兹进化过程中分支半古典历史。我们认为存在两个历史,这有助于EPI,其中一个是在早期占主导地位的信息丢失,而另一个是信息提供的,在后期占主导地位。通过这样做,我们恢复了页面曲线并保留单位性,尽管页面时间大大转移到较晚的时间。一个含义是可能会侵犯熵结合。我们将方法与基于弦的岛屿和复制虫洞概念进行了比较。
The information loss paradox remains unresolved ever since Hawking's seminal discovery of black hole evaporation. In this essay, we revisit the entanglement entropy via Euclidean path integral (EPI) and allow for the branching of semi-classical histories during the Lorentzian evolution. We posit that there exist two histories that contribute to EPI, where one is information-losing that dominates at early times, while the other is information-preserving that dominates at late times. By so doing we recover the Page curve and preserve the unitarity, albeit with the Page time shifted significantly towards the late time. One implication is that the entropy bound may thus be violated. We compare our approach with string-based islands and replica wormholes concepts.