论文标题

通过精细的抽象和推理来解决数学单词问题

Tackling Math Word Problems with Fine-to-Coarse Abstracting and Reasoning

论文作者

Li, Ailisi, Jiang, Xueyao, Liu, Bang, Liang, Jiaqing, Xiao, Yanghua

论文摘要

数学单词问题(MWP)是一项重要任务,需要对数学文本理解和推理的能力。现有方法主要通过采用SEQ2SEQ或SEQ2TREE模型来将其作为一项生成任务形式化,以编码自然语言中的输入数学问题作为全局表示并生成输出数学表达式。这种方法只学习浅启发式方法,并且无法捕获输入中的细粒度变化。在本文中,我们建议以细微的方式对数学单词问题进行建模,以捕获本地细粒度信息和IT的全球逻辑结构。我们没有从全局特征生成完整的方程式序列或表达树,而是迭代地结合了低级操作数以预测高级运算符,从底部到上述求解运算符的问题和推理。我们的模型自然对局部变化更加敏感,并且可以更好地推广到看不见的问题类型。对Math23K和SVAMP数据集的广泛评估证明了我们方法的准确性和鲁棒性。

Math Word Problems (MWP) is an important task that requires the ability of understanding and reasoning over mathematical text. Existing approaches mostly formalize it as a generation task by adopting Seq2Seq or Seq2Tree models to encode an input math problem in natural language as a global representation and generate the output mathematical expression. Such approaches only learn shallow heuristics and fail to capture fine-grained variations in inputs. In this paper, we propose to model a math word problem in a fine-to-coarse manner to capture both the local fine-grained information and the global logical structure of it. Instead of generating a complete equation sequence or expression tree from the global features, we iteratively combine low-level operands to predict a higher-level operator, abstracting the problem and reasoning about the solving operators from bottom to up. Our model is naturally more sensitive to local variations and can better generalize to unseen problem types. Extensive evaluations on Math23k and SVAMP datasets demonstrate the accuracy and robustness of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源