论文标题

非省力aubry-andré模型中定位 - 迁移过渡的非平衡动力学

Nonequilibrium dynamics of the localization-delocalization transition in the non-Hermitian Aubry-André model

论文作者

Zhai, Liang-Jun, Huang, Guang-Yao, Yin, Shuai

论文摘要

在本文中,我们调查了具有周期性边界条件的非俄勒冈州奥布里·安德烈模型中定位跃迁的驱动动力学。根据准周期电位$λ$的强度,该模型经历了定位 - 偏置相变。我们发现,本地化长度$ξ$满足$ \ varepsilon $是距关键点的距离,而$ν= 1 $是独立于非Hermitian参数的通用关键指标。此外,从基态和第一个激发状态之间的能量差距的有限尺寸缩放中,我们将动态指数$ z $确定为$ z = 2 $。 $ n $ th th $ n $ n $ th $ s = 0.1197 $的逆参与率(IPR)的关键指数也被确定。通过将$ \ varepsilon $线性更改以越过关键点,我们发现驱动动力学可以由kibble-zurek缩放(kzs)描述。此外,我们表明具有相同指数集的KZ可以推广到激发态中的定位相变。

In this paper, we investigate the driven dynamics of the localization transition in the non-Hermitian Aubry-André model with the periodic boundary condition. Depending on the strength of the quasi-periodic potential $λ$, this model undergoes a localization-delocalization phase transition. We find that the localization length $ξ$ satisfies $ξ\sim \varepsilon^{-ν}$ with $\varepsilon$ being the distance from the critical point and $ν=1$ being a universal critical exponent independent of the non-Hermitian parameter. In addition, from the finite-size scaling of the energy gap between the ground state and the first excited state, we determine the dynamic exponent $z$ as $z=2$. The critical exponent of the inverse participation ratio (IPR) for the $n$th eigenstate is also determined as $s=0.1197$. By changing $\varepsilon$ linearly to cross the critical point, we find that the driven dynamics can be described by the Kibble-Zurek scaling (KZS). Moreover, we show that the KZS with the same set of the exponents can be generalized to the localization phase transitions in the excited states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源