论文标题

CAS-NET:胎儿MRI的有条件地图集的产生和脑部分割

CAS-Net: Conditional Atlas Generation and Brain Segmentation for Fetal MRI

论文作者

Li, Liu, Ma, Qiang, Sinclair, Matthew, Makropoulos, Antonios, Hajnal, Joseph, Edwards, A. David, Kainz, Bernhard, Rueckert, Daniel, Alansary, Amir

论文摘要

胎儿磁共振成像(MRI)用于产前诊断并评估早期脑发育。在多个大脑分析任务中,对不同脑组织的准确分割是至关重要的一步,例如皮质表面重建和组织厚度测量。然而,胎儿MRI扫描容易容易影响手动和自动分割技术的正确性。在本文中,我们提出了一种新型的网络结构,该结构可以同时产生条件地图集并预测脑组织分割,称为CAS-NET。条件地图集提供了解剖学先验,尽管由运动或部分体积效应引起的强度值的异质性,但可以限制分割连接性。对发展中的人类连接项目(DHCP)的253名受试者进行了训练和评估所提出的方法。结果表明,所提出的方法可以生成具有尖锐边界和形状方差的条件特异性图集。它还针对胎儿MRI的多类脑组织,其总体骰子相似性系数(DSC)为$ 85.2 \%$,用于所选的9个组织标签。

Fetal Magnetic Resonance Imaging (MRI) is used in prenatal diagnosis and to assess early brain development. Accurate segmentation of the different brain tissues is a vital step in several brain analysis tasks, such as cortical surface reconstruction and tissue thickness measurements. Fetal MRI scans, however, are prone to motion artifacts that can affect the correctness of both manual and automatic segmentation techniques. In this paper, we propose a novel network structure that can simultaneously generate conditional atlases and predict brain tissue segmentation, called CAS-Net. The conditional atlases provide anatomical priors that can constrain the segmentation connectivity, despite the heterogeneity of intensity values caused by motion or partial volume effects. The proposed method is trained and evaluated on 253 subjects from the developing Human Connectome Project (dHCP). The results demonstrate that the proposed method can generate conditional age-specific atlas with sharp boundary and shape variance. It also segment multi-category brain tissues for fetal MRI with a high overall Dice similarity coefficient (DSC) of $85.2\%$ for the selected 9 tissue labels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源