论文标题
Bernstein-Gelfand Tensor产品函子和重量2 Eisenstein系列
The Bernstein-Gelfand Tensor Product Functor and the Weight-2 Eisenstein Series
论文作者
论文摘要
Bernstein-Gelfand Tensor产品函数是带有有限尺寸模块的张量产品提供的Harish-Chandra模块类别的内形函数。我们提供了这些张量产品函数的自形类似物,该量子由矢量值的自动形式表示实现,在所有有限位置都很微不足道。他们自然地解释了矢量值模块化形式在Bringmann-Kudla最近在Harish-Chandra模块上与谐波弱Maaß形式相关的作用。我们给出了图像$ \ mathrm {sym}^1 \ otimes \ otimes \ varpi(e_2)$的自动形式表示$ \ varpi(e_2)$,由Eisenstein系列的重量$ 2 $在其中一个Tensor产品函数下产生。这是基于Roy-Schmidt-Yi的工作,他最近确定了$ \ varpi(E_2)$的结构。他们发现,$ \ varpi(e_2)$在所有位置上都不会将其作为限制性张量产品分解为$ \ mathbb {q} $,而我们发现$ \ mathrm {sym}^1 \ otimes \ otimes \ varpi(e_2)$具有直接的总汇总。此求和符合$ e_2 $的全态和模块化的矢量值类似物。 $ \ mathrm {sym}^1 \ otimes \ varpi(e_2)$中的补充是来自Bringmann-Kudla工作中的矢量值示例之一。我们的方法使我们能够确定其在有限位置的结构。
The Bernstein-Gelfand tensor product functors are endofunctors of the category of Harish-Chandra modules provided by tensor products with finite dimensional modules. We provide an automorphic analogue of these tensor product functors, implemented by vector-valued automorphic representations that are trivial at all finite places. They naturally explain the role of vector-valued modular forms in recent work by Bringmann-Kudla on Harish-Chandra modules associated with harmonic weak Maaß forms. We give a detailed account of the image $\mathrm{sym}^1 \otimes \varpi(E_2)$ of the automorphic representation $\varpi(E_2)$ generated by the Eisenstein series of weight $2$ under one of those tensor product functors. This builds upon work by Roy-Schmidt-Yi, who recently determined the structure of $\varpi(E_2)$. They found that $\varpi(E_2)$ does not decompose as a restricted tensor product over all places of $\mathbb{Q}$, while we discover that $\mathrm{sym}^1 \otimes \varpi(E_2)$ has a direct summand that does. This summand corresponds to a holomorphic and modular, vector-valued analogue of $E_2$. The complement in $\mathrm{sym}^1 \otimes \varpi(E_2)$ arises from one of the vector-valued examples in the work of Bringmann-Kudla. Our approach allows us to determine its structure at the finite places.