论文标题
范德华的意外通用无间隙的表面状态的三边形 - 弗里术方法磁性绝缘体
Three-Dirac-fermion approach to unexpected universal gapless surface states of van der Waals magnetic topological insulators
论文作者
论文摘要
分层的Van der Waals(VDW)拓扑材料,尤其是最近发现的MNBI $ _2 $ te $ _4 $ _4 $ - 磁性拓扑绝缘子(TIS)引起了极大的关注。但是,关于抗铁磁(AFM)ti Mnbi $ _2 $ te $ _4 $,表面状态是否被覆盖还是无间隙,这对于各种磁性拓扑现象至关重要。在这里,开发了最小的三层屈光度方法,以通常在Interlayer VDW间隙的调制下描述非磁性/磁VDW TI的拓扑表面状态。特别是,这种方法用于解决有关VDW AFM TIS表面状态的有争议的问题。值得注意的是,由于表面铁磁层的Chern数值等于零等于零,因此发现了拓扑保护的无间隙狄拉克孔表面状态由于表面上的层间间隙的较小膨胀而出现。在所有其他情况下,表面状态仍然蒙上了大小。我们对AFM Ti Mnbi $ _2 $ TE $ _4 $的第一原理计算进一步证实了这些结果。理论上发现的无间隙狄拉克孔状态提供了一种独特的机制,可以理解MNBI中实验观察到的无间隙表面状态的难题。这项工作还为实验提供了一种有希望的方法,以实现MNBI $ _2 $ _2 $ _4 $ _4 $胶片具有较大能量差距的固有磁量子异常效应。
Layered van der Waals (vdW) topological materials, especially the recently discovered MnBi$_2$Te$_4$-family magnetic topological insulators (TIs), have aroused great attention. However, there has been a serious debate about whether the surface states are gapped or gapless for antiferromagnetic (AFM) TI MnBi$_2$Te$_4$, which is crucial to the prospect of various magnetic topological phenomena. Here, a minimal three-Dirac-fermion approach is developed to generally describe topological surface states of nonmagnetic/magnetic vdW TIs under the modulation of the interlayer vdW gap. In particular, this approach is applied to address the controversial issues concerning the surface states of vdW AFM TIs. Remarkably, topologically protected gapless Dirac-cone surface states are found to arise due to a small expansion of the interlayer vdW gap on the surface, when the Chern number equals zero for the surface ferromagnetic layer; while the surface states remain gapped in all other cases. These results are further confirmed by our first-principles calculations on AFM TI MnBi$_2$Te$_4$. The theorectically discovered gapless Dirac-cone states provide a unique mechanism for understanding the puzzle of the experimentally observed gapless surface states in MnBi$_2$Te$_4$. This work also provides a promising way for experiments to realize the intrinsic magnetic quantum anomalous Hall effect in MnBi$_2$Te$_4$ films with a large energy gap.