论文标题

两个远程机械谐振器之间加速的高斯量子状态转移

Accelerated Gaussian quantum state transfer between two remote mechanical resonators

论文作者

Rezaei, M., Javidan, K., Abdi, M.

论文摘要

远程机械谐振器之间确定性量子状态转移的主要挑战是局部反应性和通信通道中的传输损失。在克服这一限制的路径中,在这里,我们采用绝热通道协议的快捷方式,在单独的光学机械系统中的两个远程机械模式之间设计了快速可靠的演化路径。通过工程耦合到中间光纤通道之间,可以考虑两个节点之间的量子状态转移。耦合脉冲的操作是使系统的深色本征模与纤维模式分离,并通过抵绝热的驱动器来补偿纤维模式,并过渡到明亮的模式。我们表明,一个人获得了一个量子状态转移,并为各种高斯州获得了高保真度。将效率与在存在损失和噪音的情况下将绝热通道方案进行比较。我们的结果表明,虽然绝热通道方案非常敏感,但绝热性的捷径即使对于耦合强度的较小值,也提供了强大而快速的量子态转移。还通过数值和有效的单模型模型研究了两种方案的性能,通过消除非谐振纤维模式可以找到。我们的发现可能为在实现连续变化高斯量子状态转移时使用光力系统铺平了道路。

The main challenge in deterministic quantum state transfer between remote mechanical resonators is the local decoherence and the transmission losses in the communication channel. In the path of overcoming this limitation, here we employ a shortcut to adiabatic passage protocol to devise a fast and reliable evolution path between two remote mechanical modes in separate optomechanical systems. A quantum state transfer between the two nodes is conceived by engineering their coupling to an intermediate fiber optical channel. The coupling pulses are operated such that the dark eigenmode of the system is decoupled from the fiber modes and transitions to the bright modes are compensated for by counterdiabatic drives. We show that one obtains a quantum state transfer with high fidelity for various Gaussian states. The efficiency is compared to that of adiabatic passage protocol in the presence of losses and noises. Our results show that while the adiabatic passage protocol is very sensitive to the decoherence, the shortcut to adiabaticity provides a robust and fast quantum state transfer even for small values of the coupling strength. The performance of both protocols are also investigated for the case of multimode fiber through numerical and an effective single-model model which is found by the elimination of off-resonant fiber modes. Our findings may pave the way for using optomechanical systems in the realization of continuous-variable Gaussian quantum state transfer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源